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ON THE PHENOMENON OF THERMOELASTIC INSTABILITY (THERMAL

FLUTTER) OF BOOMS WITH OPEN CROSS SECTION

By Richard M. Beam

Ames Research Center

SUMMARY

Satellites with long extendible appendages (booms) of open cross section
have experienced unstable oscillations. Telemetered data on the frequency of
oscillation and satellite exposure to solar radiation suggest that the insta-
bility results from a thermoelastic flutter of the booms. Laboratory experi-
ments performed to demonstrate the phenomenon of thermoelastic flutter are

described.

The problem of torsional instability is chosen for theoretical treatment
and comparison with quantitative experimental results. The theoretical and
experimental models show that (1) one-degree-of-freedom torsional thermo-
elastic flutter is possible and predictable, (2) thermoelastic coupling can
stabilize as well as destabilize a system, and (3) small amplitude linear
theory can predict thermoelastic instability.

INTRODUCTION

Various satellite applications require long extendible appendages (booms)
as a part of the design configuration. One design of a deployable boom is

—Developed open cross
section boom

Drum for undeployed
boom storage

Figure 1.- Deployable boom.

shown schematically in figure 1. The
diameters of these booms are generally
about 1/2 in. and the length varies from
a few feet to several hundred feet. This
type of boom has been used successfully
in many satellites for antennas, gravity
gradient stability augmentation, and
isolation of equipment and experiments
from the satellite.

Telemetered data from the Orbiting
Geophysical Observatory (0GO) satellite
indicated that at various times the satel-
lite experienced oscillations of increas-
ing amplitude. The frequency of the
unstable oscillations was the same as the
natural frequency of the booms attached
to the satellite. It was further noted
that the oscillations began as the satel-
lite moved from the earth's shadow into



the sunlight and subsequently decayed when the satellite re-entered the earth's
shadow. The frequency of the oscillations and their occurrence only when the
satellite was exposed to sunlight led to conjecture that the instability was a
result of the coupling of the thermal radiation from the sun and the elastic
deformations of the booms.

In May 1968, the observed phenomenon was brought to the attention of the
author. Because of the lack of any physical evidence of the phenomenon (other
than the limited flight data noted above), an experimental laboratory program
was initiated. The primary goal of this program was the laboratory demonstra-
tion of thermoelastic instability. Since booms of open cross section were
being used on the flight where the instability was observed, a similar
material was chosen for the laboratory experiments.

The first successful demonstration (June 4, 1968) was performed with a
3-ft-long boom that was fixed at one end and had an attached tip mass at the
other (fig. 2). The boom material was beryllium copper with a diameter of
1/2 in. and a wall thickness of 0.002 in., The boom was painted black to
increase thermal absorptivity, and the thermal source was provided by photo-
flood lamps. The boom had an overlapping cross section (section A-A, fig. 2).
The system was observed to be stable for small amplitude motions but unstable
(oscillatory increasing amplitude) for larger amplitudes with eventual limit
cycle oscillation in a coupled torsional bending mode. The limit cycle

oscillation amplitudes consisted of tip

Pulfey
Kf/Qk\\\\ mass deflections of several inches (normal
9 to the plane of the light) and tip mass
|~ Piano wire rotations of +90°,

Additional demonstrations of thermal
flutter were made using an unpainted boom

“p"m$ﬂy of the same material but 19 ft long. The

f boom was hung from its fixed end, and
{ demonstrations were made with and without

Counterbalance . . .
weight small tip masses (1/2-in. steel cylinders
Photoftoods — —Boom /A\ approximately 3 in. long, mounted
L 120° overiap coaxially with the boom). 1In each case a
L[ — coupled torsional bending mode of flutter
by was obtained.
Section A-A
Boom cross section The observed behavior of the boom

during these experiments suggested the
Figure 2.- Test arrangement for initial possibility of a one-degree-of-freedom
demonstration of thermoelastic torsional flutter. To check this, a large
instability. (8-in.-diameter, 1/4-in.-thick) disc was
attached to the end of the 19-ft-long boom. The resulting flutter was almost
pure torsion with rotational limit cycle amplitude of the tip disc reaching
+3 revolutions while the tip deflected only 3 in. In addition, tests were
conducted with the tip mass fully restrained from lateral deflection. These
demonstrations were recorded in a 16 mm color, sound film which is available
on loan from the author (R. M. Beam, mail stop 242-1, Ames Research Center,
Moffett Field, Calif., 94035).



Theoretical development was initiated concurrently with the experimental
program. The goal of this program was to develop an understanding of the
basic phenomenon and to provide an analytical model that would aid in pre-
dicting thermal flutter. To simplify the mechanics of the problem, the
initial analytical approach was based on a linearized one-degree-of-freedom
(torsional) model suggested by the above experiments. The purpose of this
report is to describe the results of the theoretical program and to compare
them with the measured data obtained from the experiments.

Several papers have become available to the author during the preparation
of this report (refs. 1-4). Each presents an analytical treatment of a
thermoelastic problem. Augusti (ref. 1) considers the bending of a cantilever
strut idealized as either a one- or two-degree-of-freedom system subjected
to radiant heat parallel to the axis of the strut. Yu (ref. 2) considers a
generalization of the same problem. He treats the beam as a continuum, uses
a modal-type solution, and allows different angles of inclination of the beam
with the heat source. The criteria for flutter reached by Augusti and Yu are
completely contradictory. After a cursory examination of both papers, this
author is inclined to agree with the criteria of Augusti. The discrepancy
with Yu apparently comes from his treatment of 'time lag."

Koval, Mueller, and Paroczai (ref. 3) present a theory for an initially
straight boom of open cross section simulating the OGO-IV spacecraft. Both
twisting and bending of the boom are allowed. Results are given in the form
of numerical solutions to the derived equations.

Donohue and Frisch (ref. 4) discuss the results (without presenting the
formulation) of a program similar to that of Koval et al. Again the results
are presented as numerical solutions to the derived equations.

Additional analysis of coupled modes and large amplitudes will
undoubtedly lead to interesting results. The initial experiments described
above indicate that systems which are stable for small amplitudes can be
unstable for large amplitudes. However, the small amplitude analysis may
prove adequate for the determination of the stability of systems subjected to
small perturbations about an equilibrium configuration.

The author wishes to thank Ralph Abbott of Spar Aerospace Products
Limited, who provided the boom material for the experimental program.

NOMENCLATURE

B steady-state radiation input to boom
Cy warping rigidity of boom

cg coefficient of structural damping in pendulum




modulus of elasticity
wall thickness of boom used for torsional spring

polar mass moment of inertia of tip mass of torsional pendulum about
center of rotation

elastic spring constant of torsional pendulum
constant defined by equation (16)

constant defined by equation (18)

length of boom used for torsional spring
torsional moment in boom

perturbation radiation input to boom

radius of boom used for torsional spring
parameter in characteristic equation

root of characteristic equation

change in boom temperature during perturbation about equilibrium
position

time

total length of "rolled out" cross section of tube (2mr for
non-overlapped tube)

coordinate along boom (origin at fixed end)

coefficient of expansion for boom material

thermal constant (eq. (8))

damping coefficient (eq. (20))

total angular deformation of pendulum tip mass

angular deformation of pendulum tip mass due to inertial loading
angular deformation of pendulum mass due to thermal loading
angular displacement of boom cross section

function defined by equation (9)

angular coordinate of point on surface of boom




Y angle between thermal source and equilibrium axis of symmetry of boom
(fig. 3)

natural frequency of torsional pendulum (eq. (19))
() dummy variable of integration
(') differentiation with respect to time

(') differentiation with respect to X
ANALYSIS

Basic Model

The model discussed in this report was chosen because it leads to a
simple mathematical analysis and yet demonstrates one of the basic mechanisms
of thermoelastic coupling. In addition, it provides a simple physical analogy
from which quantitative experimental data can be obtained for comparison with
the theoretical assumptions.

Consider the dynamics of the torsional pendulum illustrated in figures 3
and 4. The elastic spring of the pendulum is a split non-overlapping boom.
The upper end of the boom is rigidly fixed and warping of the cross section
of the boom is prevented. A mass is attached to the lower end of the boom,
which is free to warp. The tip mass is restrained from lateral displacement
by a low friction bearing. If the inertia of the tip mass is large compared
with that of the tube, the system can be analyzed as a simple one-degree-of-
freedom mechanism.

Let O denote the total angular rotation of the tip mass and I, the
mass moment of inertia of the tip mass, then the torque acting on the tip of
the boom is -I_0. This torque is partially balanced by the torque of the

y/1nirg
1x
Radiation
source
Boom | Radiation source
- i
A A
Tip mass
(Im, W) Bearing h

(lateral 8

)\ restraint) Small gap

VR

'/ @ Typical boom cross
section

\PLSmuH gap Equilibrium position Perturbed position

Section A-A
Figure 3.- Analytical model and physical model Figure 4.- Geometry for thermal deformation
used in torsional pendulum investigation. analysis.



elastic restoring forces, KgOg, where O is the elastic deformation of the
boom tip and Kg the elastic spring constant of the boom. In addition, there
is a damping torque, cgOf (assumed proportional to the elastic deformation);
therefore

Imé + cgop + K =0 (1)

%
The total deformation © differs from the elastic deformation, O, by
the amount of thermal deformation, ©r; therefore,

© =0 + Or (2)

Elastic Deformation

If the angular rotation of the boom at station x at time t 1is denoted
by 6(x, t), then the torque in the boom, M (assumed constant along the
length), is (ref. 5)

Mt=C"“"_"Cl
where C 1s the torsional rigidity and C; the warping rigidity.

When the boom wall thickness h is much less than the boom diameter,
2r(h << 2r), and the boom length ! is not too great, then (1% << C; and it
can be shown (ref. 6) that a good approximation to M¢ 1is

a36g
M. = -C 3
t 1233 (3)
where C;, the warping rigidity,! is (ref. 5)
N S B
C1 = §7 w r*hE (4)

In this model the upper end of the boom (x = 0) is fixed and restrained from
warping while the lower end is free to warp; therefore, the boundary

conditions for equation (3) are

6;(0) = 0, 8L(0) = 0, 6l (1) = 0 (5)

The solution for equation (3) with boundary conditions (5) is

M,.2 2 3
= _t7 (X2 X°
°e = T (2 62) (6)

IThe boom is assumed to be constrained to rotate about the geometric
center of the circular cross section. For rotations about the shear center
the warping rigidity would be reduced. The pendulum is assumed to be
sufficiently short that the effect of torsional rigidity is negligible when
compared to the effect of warping rigidity.
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The spring constant, Kg, of the torsional pendulum is

Me
Kgp = ———
6(2)
or
3Cy
Kg = = (7

Thermal Deformation

The amplitudes and frequencies of the model will be restricted to those
for which the temperature perturbation due to change of radiation input (with
time) is large compared to the temperature perturbation due to change in con-
duction around the cross section. The analysis will be based on small per-
turbations about an equilibrium configuration. The system is assumed to have
reached an equilibrium temperature distribution (the absorption from thermal
radiation balanced by the output due to emission from the entire surface)
before it is disturbed.

If the source temperature remains constant and the tube temperature
changes are not large during the perturbations, then the boom temperature,
T, can be expressed as (ref. 7)

g% + BT = R(X,d))t) (8)

where B and R depend on the source of radiation and the properties of the
boom.? It is assumed that the boom is thin walled and the temperature through
the thickness does not vary.

If the radiation source is a uniform parallel field as shown in figure 4,
the normal radiation input, Q, which produces the equilibrium temperature
distribution in the tube is (-m < ¢ < + )

Q(¢) = AB cos(¢ - ¥)

where A 1is unity for values of ¢ corresponding to the portion of boom
surface exposed to radiation and is zero otherwise. For 0 < V¥ < w, X is
defined by the conditions

2Equation (8) is obtained from the equation of radiation input (propor-
tional to the difference of the fourth powers of the body and source) and
change in internal energy of the body. The linearization is possible if the
difference between body and source temperature experiences only small changes.
The constants B and R depend on the radiation boundary conductance, specific
heat and density of the material, and the thickness of the boom. Additionally,
R depends on the temperature of the source.



A =1 if-g—id)—‘}‘s_—;—
= 0 otherwise (9)
\y--7211¢in
A =1 if 5

= 0 otherwise

As the cross section of the boom rotates through an angle 6, the change in
radiation is

R(x,¢,t) = AB cos{¢p - ¥ + 8) - AB cos(¢ - ¥)
For small rotation (6) of the cross section R can be approximated by
R(x,9,t) = -AB sin(¢e - ¥)o(x,t) (10)

If the perturbation temperature, T, is assumed to be zero at time zero
[T(x,4,0) = 0], then from equations (8) and (10)

t —
T(X,4,t) = _e'Btf AB sin(¢ - ¥)6(x,D)elt df (11)
0

Note that T(x,¢,t) describes the perturbation temperature over the surface of
the boom.

The thermal deformations will, in general, be quite small compared with
the elastic deformations. Therefore, the geometric distortion can be assumed
to be proportional to the elastic deformation shape (eq. (6)).

3 (x2 1 x3
B(x,t) ~ 0(t) 7z (—7 - TT) (12)

The proportionality constant was chosen so that 6(1,t) = 0(t).

The thermal deformation due to the perturbation temperature T is3

338
3x3

3This relatlon can be obtalned from reference 5 1f the stress strain
relation o = Ee 1is replaced by ¢ = E(e - aT), which includes the effect
of thermal "strains.' After evaluation of the shear stress, the torque is
obtained by integration over the cross-sectional area of the boom, and
equation (13) is obtained.
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Substitution of the temperature distribution T from equation (11),
with the approximation for 6 (eq. (12)) into equation (13), leads to

t

%07 12qr Bt — 8t —[3 1 x2 " — —
ax3 = - w3 e O(t)e dat [ﬁ- (X— —2" —7,—)] AB sin (¢ - W)d‘b d¢
o} - -
(14)
After integration of equation (14) three times with respect to x and
application of the boundary conditions at the upper end of the boom
2
o0y - 567 (0) } 8204.(0) i
T 3x 3ax2
and at the lower end of the boom
the result is
op = 89T1% | (yype Bt i o (t)dt (15)
T = Tgy3 “1UHEe A
where
i ¢ 2 0 <V i_%
Kiy(¥) = - J [ A sin(¢ - ¥)d¢ do = (16)
- em 2(1 + m cos Y) g-i_w =
K;(¥) is plotted in figure 6.
System Damping and Stability
The equations of motion of the torsional pendulum perturbed about an
equilibrium position are given by equations (1), (2), and (15), or
5 : 2 -
0 + ZCwOOE + wOOE =0
© = g + Of (17)

op + BOp = K3(¥)0O

where equation (15) has been differentiated with respect to time, and



6ar1?

Ky (¥) =
3 5w3

Ky (¥)B (18)

wo = /Kg/Ip (19)

CE
R T (20)

The characteristic equation for the system of equations (17} is
(s + B)(s? + 2zugs + w3) - K3(2zwgs + wd) =0 (21)

Therefore, the pendulum displacement 6 is

3
spt
0 = E Ane
n=1

where s, (n =1, 2, 3) denotes the roots of the characteristic equation (21)
and A, denotes constants determined by the initial conditions.

The roots of equation (21) are either (a) three real roots or (b) one
real root and a complex pair of roots. The system stability depends only on
the sign of the real part of the roots (a positive real part indicating
instability). 1In general, for the torsional pendulum the roots will be of
type (b). The type of instability observed in the tests (to be discussed
later) has a negative real root, and the real part of the complex pair of
roots is positive, thus the motion is oscillatory divergent or "flutter."

A positive real root (negative real part of complex pair) corresponds to the
divergent nonoscillatory or thermal buckling mode of instability.

From Routh's stability criterion (ref. 8) it can be shown that the real
part of all roots of equation (21) is negative (stable system), provided

ZCwO + B >0 )
2 2 2
Ky - 2cw02 + 4r°wgB + 2B“C N 0> (22)
47 wg + 278 - wg
B-K3>0 J
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No structural damping.- Consider first the case of zero structural
damping (cg = 0). The characteristic equation (21) reduces to

(s + B)(s2 + w2) - Kzw2 =0 (23)
and the stability criteria, equation (22), reduce to
B >0
Kz >0
B8 > Kj

or since B 1is a positive number, simply

0 < K3 < B
3 +10 45 o =2
R The locus of the roots of equation (23)
ol K (neqotive) for positive and negative values of K3
Fgineqative is shown in figure 5. The following
——Kjz (positive)

conclusions can be drawn from figure 5
and the stability criteria:

=5 2 *D + (a) For K3 negative, the pendulum
will be unstable and have an oscillatory
divergent motion (i.e., flutter).

Imaginary part of root
o]
I
I
|
|
|

-1 t-o
B =07
Wo=278 (b) For K3 positive, the pendulum
-2 will be stable provided Kj; < g. If
s 5 o5 K3 > 8 the motion of the pendulum will
I - '_F‘“\\ be divergent (nonoscillatory) or the
| | pendulum will experience thermal
b b btk buckling.
Real part of root
Figure 5.- Root locus for torsional pendulum Since B is pOSitive (source
characteristic equation (mo structural hotter than pendulum), the sign of Kj
damping). (eq. (18)) has the same sign as K.
t?%mmﬁm The value of K; ?s shown in figure 6.
source For the pendulum with no structural
+ damping, we may conclude, therefore, that

4 ‘ the position of the source determines
the stability of the pendulum in the
2l flutter mode. For angles VY 1less than
\ 108°, the pendulum will not flutter, and
Stable 4 for angles greater than 108° the pen@ulum

will flutter. If the value of K3 is

[e]

K, (¥) uMmMe* positive and greater than g, the
ol pendulum will experience thermal buckling.
Structural damping.- For small
'4F' ' values of structural damping the conclu-
sions of the previous section are little
é- Pl éwa" . % - changed. The locus of the roots of the

. . characteristic equation i hown in
Figure 6.- Function K;(¥) evaluated from T1s q s sho 1

equation (16).
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figure 7. Since B, ¢, and w, are
3] -5 positive, the stability criteria
wore o (eq. (22)) reduce to

2 ~— K3 (negative) 2 2
——Kj (positive) 2cwy% + 4z%wyB + 2B%C

<K3<B
(= 4C2w0 + 208 - wg

-5 0 +.5 +1 The primary difference caused by the
structural damping is that larger abso-
L -00167 lute values of K3 are required to
== B=07 produce flutter in the pendulum.
We=2.78
P Note that for two thermal sources,
4145 o one of each located at ¥ =0 and ¥ = 7,
e ety N the total K; value is negative
[2 - 2(r - 1)~ -2.28]. Thus this heat-
S I B | ! ing configuration leads to an unstable
’ : ‘ system for low values of structural
damping.* This conclusion has been

Imaginary part of root
o
I

Real part of root
Figure 7.- Root locus of torsional pendulum

characteristic equation (with structural demonstrated experimentally.
damping).

EXPERIMENTS

Arrangement

The experiments to obtain quantitative data were conducted on a pendulum
with the following properties:

r = 0.125 in. Ip = 0.00258 1b in. sec?
1 = 13.5 in. E = 17x10%® 1b in. 2
h = 0.00144 in. o = 17.8x10°6 °c”!

The torsional spring boom was beryllium copper. The exterior surface of
the tube was painted flat black to increase the thermal absorptivity coeffici-
ent. The heat source was a tubular, quartz, tungsten-filament, infrared lamp.
A parabolic ceramic reflector was used to direct most of the lamp's thermal
output in parallel rays over the surface of the tube. The distance between
the lamp filament and tube center line was four inches.

“This observation may have particular significance in the application
of the booms designed with perforations. The perforations are chosen so that
the surfaces away from and toward the sun have the same radiation input and
thus prohibit bending of the booms. Uniform radiation on both sides of the
boom, however, does not necessarily ensure that the thermal '"damping' will be
zero.

12



1 The tests were conducted in a bell
Lamp jar with absolute pressure less than

0.5 mm Hg. The vacuum was used to

remove the effects of laboratory and con-

Boom vective currents from the measurements.

To expedite the data acquisition, lamps
were placed at several locations around
the tube (fig. 8).

\\\\ Test Procedure

Lamps 1, 2, and 5 could be operated
5 independently but 3 and 4 were operated
in unison. After the bell jar was evacu-
) ated to an absolute pressure of less than
Figure 8.- Lamp arrangement for bell jar 0.5 mm Hg, the damping measurements were
experiments. - .
conducted as indicated below:

2

(a) (Divergent oscillations, unstable motion, ¥ = 180°) Lamp number 2
was turned on and temperature distribution allowed to reach steady state (1 or
2 min). Although the system is, in general, unstable with only lamp number 2
on, this procedure could be accomplished by very precise alinement of the tube
so that the input disturbance from lamp turn-on was minimized. Next, lamp
number 5 was briefly turned on (approximately 1 sec) to provide a system dis-
turbance. The response of the system (growth in amplitude) was recorded on
high-speed motion picture film (100 frames/sec) for later analysis.

(b) (Convergent oscillations, stable motion, ¥ = 0°) After large
amplitude motion (=~ *90°) was obtained as in step (a), lamp number 2 was
turned off and lamp number 1 turned on. The subsequent decay of pendulum
amplitude was recorded on film.

(¢) (Structural damping coefficient, no lamp) The amplitude was
increased to the desired level, as in step (a). Then all lamps were turned
off, and the decay due to structural damping was recorded.

(d) (Convergent oscillations, stable motion, two lamps, ¥ = ¥90°) The
measurement of damping for lamp positions other than V¥ = 0° and ¥ = 180°
requires that the lamps be used in pairs to maintain the equilibrium symmetry
of the tube. Thus lamps 3 and 4 were operated in unison, and step (c) was
repeated to obtain data for ¥ = 90°.

Results of Experiments

The films were read to determine the positive and negative amplitudes at
successive peaks. Typical amplitude decay curves are shown on semilog plots

13
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Figure 9.- Absolute value of amplitude peaks vs. Figure 10.- Logarithmic decrement vs. amplitude
number of half cycles of oscillation of of oscillation of torsional pendulum for
torsional pendulum for various lamp positions. various lamp positions.

in figure 9. A purely exponential decay would, of course, lie along a
straight line. The lack of a good straight line fit for the "lamps off'' case
indicates that the structural damping is slightly nonlinear. The logarithmic
decrement was plotted as a function of amplitude to obtain the change in
damping due to ''lamps on.'" That is, the logarithmic decrement was computed
for each cycle on the basis of the decay for that cycle. The results of these
computations are shown in figure 10. Note that over a wide range of ampli-
tudes the difference between the logarithmic decrement with ''lamps on' and
damping with "lamps off'" appears more or less constant. This indicates that
the nonlinearity in the system decay (nonexponential) could be due to non-
linear system structural damping alone. Resolution (to approximately 1°
amplitude) of the data film prohibited obtaining reliable decay data for the
amplitude range -12° < 6 < +12°,

Determination of B and B

Comparison of theoretical and experimental results requires a knowledge
of the parameters B and B. These were obtained by placing a thermocouple on
the inside surface of a specimen of boom similar to the pendulum material
(fig. 11). A lamp was placed 4 in. from the boom center line and the lamp
was turned on. After the thermocouple output indicated that an equilibrium
temperature had been reached in the specimen, the recorder was turned on and
a screen was quickly placed between the lamp and the specimen. From the
resultant thermocouple output record, the value of B and 8 were obtained by

14



Screen

Screen
Thermocouple Boom

. + | ~Lamp
= S SNG4

Thermocouple

—~—

Figure 11.- Test arrangement for determination Figure 12.- Test arrangement for determination
of B and B - lamp at V¥ = 0. of B and B - two lamps at ¥ = #90°.

a best fit to the solution of equation (13) for a step function R(x,¢,t).
The same test was repeated with two lamps (fig. 12) to obtain data for the
¥ = 90° case.

Comparison of Theory and Experiment

The values of B, B, and ¢ (as determined from the free oscillation
decay) can be substituted into the analytical model, and from the roots of

‘ the characteristic equation, the loga-
O Experiment

3 — Theory rithmic decrement of the response can be

—— Lamps off (using experimentally determined determined. The comparison of the theo-
structural damping

retical and experimental values of loga-
rithmic decrement is shown in figure 13.

The theoretical curve of figure 13
is based on the structural damping
(logarithmic decrement) values obtained
from the experiments at amplitudes, 0, of
about 30° (fig. 10).° Correspondingly,
the experimental data points are taken
© from figure 10 for the same amplitude.

-2 Since the data points of figure 10 are
A relatively parallel for different lamp
0 . on v positions, the choice of some other
amplitude for the comparison in figure 13
Figure 13.- Comparison of theoretical and would result in a shift of the ordinate
experimental values of logarithmic decrement. of both theory and experiment. However,
Calculations based on 30° amplitude their relative location would remain
oscillation (fig. 10).
unchanged.

Logarithmic decrement

SAlthough the theory is valid only for small angular displacements of
the boom (6), it should be noted that © represents the maximum angular
displacement, therefore, good agreement should be expected for relatively
large values of O,

15



CONCLUSIONS

1. Thermoelastic instability (thermal flutter) can occur and can be
demonstrated in laboratory experiments,

2. Thermoelastic coupling can lead to a more stable system (add positive
damping) .

3. One-degree-of-freedom thermal flutter is possible and can be
demonstrated readily with a torsional pendulum.

4. A small amplitude linear analysis has been presented that predicts
the experimentally measured thermoelastic coupling for the torsional pendulum.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 94035, March 27, 1969

124-08-06-02-00-21
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